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Polyakov spin factor, Berry phase and random walks of 
spinning particles 

I A Korchemskayat and G P Korchemsky$ 
t Energy Institute, Kraanokazarmennaya 14, 105835 Moscow, E-250 USSR 
t Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, USSR 

Received 5 March 1991 

Abstract. The path-integral representations for the propagator and the effective action of 
three-dimensional Euclidean fields with arbitrary spins are found which differ from the 
analogous path-integrals for scalar panicles by the Polyakav's spin factors. For half-integer 
and integer spins the spin factor coincides with Abelian and non-Abelian Berry phase, 
respectively. 

1. Introduction 

Recently, Polyakov has suggested [l]  that in three-dimensional spacetime elementary 
excitations described after the second quantization by Dirac fermion fields could be 

propagator S(x, y; A) of three-dimensional Dirac fermions with mass M, interacting 
with non-Abelian gauge field A,(x) is equal to the following sum over random paths 
P, between the points x and y 

in!erpre!ed as random!y wa!klng spinning pE?ic!es Wl!h tnrsinn. !n partic.!ar, !he 

S ( X , Y ;  A)= P, 1 , e x p ( - M L ( P , ) ) e x p ( - i J @ ( P , ) ) P e x p ( i  P, , dx"A@(x)) (1.1) 

where J = 4, U P , , )  is the length of the path, P-ordered exponential takes into account 
the interaction of a gauge field with current induced by a particle moving along path 
P,, @(P,) is the torsion of path [ l ]  or, equivalently, the abelian Berry phase [2-41, 
one-dimensional Wess-Zumino-Novikov-Witten term [5]. Later, the above relation 
has been proven and generalized to higher spacetime dimensions [6-81. 

Let us consider the RHS of (1.1) for an arbitrary J and treat it as an  amplitude for 
a spinning particle to go from the point x to y. Then, it turns out that [7] 

(i) the parameter J can have only quantized (integer or half-integer) values 

J = O , $ , l ,  

( i i )  the wavefunction of a spinning particle after rotation along some axis with 
. _ _ ( ^  I ) -  :" .---- r _I ^ ^  ar,g,c '7r 15 , l d I I > I " I I I , C U  as 

$(x)+ (-lY'!b(x) 

(iii) for integer (or half-integer) I identical spinning particles possess Bose (or 
Fermi) statistics. 

u3u~.4~iu~DI~iP4~ii+ibP~~.~ir 0 iPDi iOP Pubiirhing i t a  4% i 
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It is natural to suppose that the parameter J in ( 1 . 1 )  is the spin of spinning particles 
which after the second quantization are described by quantum fields with spin 1. It is 
this statement that is proved in the present paper. The representation for the effective 
action and the propagator of three-dimensional Euclidean interacting fields with spin 
J is found as sums over random paths for a spinning particle with torsion. 

The consideration is based on the use of the well known approach [9] in which 
classical fields with arbitrary spins obey the wave differential equations of first order. 

2. Quantum fields with an arbitrary spin 

In D-dimensional Euclidean spacetime the components q e ( p )  of the classical field 
with spin J and mass M have to satisfy in the momentum representation the Klein- 
Gordon equation 

( P ’ + M 2 ) d P )  =o. (2.1) 

It is well known [9] that the Klein-Gordon equation can be rewritten as a system of 
linear differential equations of the first order which in the momentum representation 
has the form 

((P. r ) + i M ) + ( p )  = O  (2.2) 

where +( p )  is a column consisting of fields q p , ( p )  and their first derivatives, ( p  .r) = 
p’r, and r,. are some matrices. The action whose variation leads to (2.2) is 

9= d D p & ( - p ) ( ( p . T ) + i M ) ~ ( p )  (2.3) 

where &( p) = +*( p)T is a ‘conjugate’ field and matrix r is a solution of the relation 

I n  the following, we restrict ourselves only to three-dimensional fields. Then, the 

I 
r;r+=rr,.. 
massive scalar field q ( p )  is described by (2.2) provided that 

where p = (p , ,  p’, p , )  is three-dimensional momentum. The classical massive vector 
field satisfies the Proca equations 

F J P )  = -ip,AAp)+ip,A,(p) p,F,.. = -iM*A,(p) ( 2 . 5 )  

which are equivalent to (2.2) for 

where ( p .  E ) * , ,  = 
tensor. Fields with spin-; obey the Rarita-Schwinger equations 

and F,(p)  = -(1/2M)&,.,,,,F,,,, is the vector dual to the strength 

( i+iM)$, , (p)=O Y ‘ M P ) = o  (2.7) 
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where p̂  = p,y' and yy = U" are Dirac matrices coinciding in D = 3 spacetime with 
Pauli matrices. To replace these equations by (2.2), one has to put 

+(PI = k ' ( P  1 (2.8) 
where spinor indices of the re-matrices are imposed. 

For fields with an arbitrary spin the matrices P are restricted by the condition that 
all components of the field + ( p )  have to satisfy the Klein-Gordon equation (2.1). For 
.,..,co:.,nGn,As , n . t 1 n \  .I.:" ..-..A:*:-.. :" F . . l f l l ^ l  : c - - - :  .L-.--,> :-- ...:-- 
. . . Y O l l l b  llClUI \'" r ", L l l l J  CUll"lLl"ll 13 LUIIII IG" 11 U l l G  IrrrpUS'b LllC rurluwrrlg cqu'l,,uir 
on matrices PI 

( P  r)+" = f ( 6 , ~ -   pt. -i&,,",,p,,) 

( p .  = p 2 ( p .  r)K (2.9) 
where K is a non-negative integer number and p ,  is an arbitrary three-vector. At 
K = 0 the solutions of the equation are Dirac matrices. At K = 1 the equation has non- 

degenerated$ 
!ri?ia! Urrmi!ian so!u:ioxs dieere-! fm- Dirac -at;iccs p:ovided :ha: !-'-mat;ices a x  

K = l  ( P ,  r)'= P * ( P .  r) d e t ( p . r ) = O  ( p . r ) + = ( p . r ) .  (2.10) 

At K 2 2  (2.9) has non-trivial solutions different from the previous ones provided that 
re-matrices are degenerated and non-Hermitian 

K 2 2  det( p '  r) = O  (P. r)+ # ( P .  r). 
It can be easily verified that matrices (2.4) and (2.6) obey (2.10) but matrices (2.8) 
correspond to the K = 2  case of (2.9). 

The parameter K entering into (2.9) has a simple meaning [9]. It determines !he 
spin content of the field $(PI .  In general, + ( p )  can be decomposed into a sum of two 

describe Dirac fermions with spin J = f ;  at K = 1 one has J = 0, 1 and the field + ( p )  
is a sum of a scalar and a vector field (a scalar field and its derivatives in (2.4) or a 
vector field and vector dual to the strength tensor in (2.6)). 

Thus, the theory (2.3) with r"-matrices (2.9) gives us an equivalent description of 
classical fields with an arbitrary spin. 

After quantization of the theory (2.3) one defines the propagator of a field + ( p )  
as a solution of the following equation 

fields with spins J = ( 1  + K ) / 2  and I!! - K)!216, For exar?lp!e, a! K = 0, (2.2) and (2.9) 

( (  p ,  r) + iM)S,( P )  = 1 (2.11) 

whose solution is [9] 

(2.12) 

where the parameter K has appeared before i n  (2.9). We notice that, first, the propagator 
has a dangerous ultraviolet asymptotics S , , ( p )  p - ' + K  and, second, it  has a singular- 
ity in the limit M + 0. 
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To understand the reason of this effect one notes that (2.11) takes into account the 
propagation of elementary excitations whose wavefunctions are eigenstates of the 
operator ( p  r) and ( p  . r)+ 

( p .  r ) l A ) = A l A ) .  (2.13) 

It  follows from (2.9) that the eigenvalues A are the solutions of the equation 
A ~ ( A ~ - ~ ' ) = O  or 

(2.14) 

The eigenvalues are in general degenerated and the value A = 0 appears for K 3 1. 
Then, the classical equations of motion (2.2) can be rewritten as (A(p)+iM)lA) = O  or 

A = 0, +p ,  -p .  

( A ~ (  p ) +  M ~ ) ~ A )  = o 
We conclude that for M f 0 among all the eigenstates of the operator ( p  . I') only 
those corresponding to non-zero A satisfy the Klein-Gordon equation (2.1). The 
eigenstates IA = 0) called zero modes do not obey (2.1). Nevertheless, after quantization 
the zero modes contribute to the propagator. As a result, the propagator (2.12) has 
both dangerous ultraviolet asymptotics and singular limit M + 0. 

Thus, to avoid these difficulties, one imposes the additional constraints on the field 
+( p )  forbidding the propagation of zero modes 

no(P)4(P) = o  (2.15) 

where no( p) is the projector onto degenerated zero modes of the operators ( p  ' r) and 

To find the explicit form of the projector no( p )  one notes that although the operator 
( p .  r) is not Hermitian for K 2 2  the operators ( p .  r ) K / p K  and ( p .  r ) K + ' / p K t '  obey 
equations like A'= A and in accordance with (2.10) can be chosen to be Hermitian. 
Hence, using (2.13) and (2.14) these operators are expressed as 

(P. r)+ t. 

(2.16) 

where n,( p) are projectors onto eigenstates corresponding to the degenerate eigen- 
values A = i p .  The Hermiticity of the above operators implies that non-zero modes of 
the operators ( p . T )  and ( p . r ) *  coincide and n+(p)n~(p)=n,(p)no(p)=O. 

Adding the 'completeness' relation 

1 =n+(P)+n-(P)+n"(p) 

n + ( p ) = $ ( ( e .  + ( e . r ) K i ' )  n-(P) =n+(-P),  
to (2.16). one finds 

l - ( - l )K (2.17) 
p = pe. 

2 
- ( e .  rY+' 1+(-1)K no( p )  = I - ( e ,  r ) K  

2 

The operator ( p .  r) can be decomposed as follows: 

( P .  r) = p n + ( p ) - ~ n - ( p ) +  9 (2.18) 

t For K 3 2  the operator ( p .  I') is not Hermirian and zera modes of ( p .  I') and ( p .  I')' are different and 
form, as will  be proven below, the orthonormal basis in the aubrpace of zero modes. 
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where P is a non-Hermitian operator acting in the subspace of zero modes: 

P'n*(p) =n*(p)P = o  ~ n o ( P ) = n o ( P ) ~ = P  
and (2.16) implies that 9' = 0. 

To understand the meaning of zero modes one has to consider the action (2.3) in 
the limit M +O. In this limit the properties of the theory are changed since the action 
(2.3) becomes invariant under the following gauge transformations 

+ ( P I -  + ( P ) + n o ( P P K - ' 5 ( P )  (2.19) 

with ( ( p )  being an arbitrary state. Then, under quantization of the massless theory 
the gauge condition (2.15) must be put on the field +( p )  to single out the only element 
among all the gauge equivalent fields (2.19). One notices that these transformations 
affect only zero modes of field 4 ( p ) .  Thus, zero modes describe degrees of freedom 
of the quantum field $ ( p )  which become gauge in the limit of vanishing mass M. 

After imposing the gauge condition (2.15) one gets the following equation for the 
propagator: 

( p . r ) + i M + - I I n , ( p )  S ( p ) = l  0-0. (2.20) ( Ly I )  

The solution to this equation is 

where S,,(p) was defined in (2.12) and the identity I I , ( p ) ( ( p . T ) ' - p 2 ) = 0  following 
from (2.9) and (2.17) was used. After substitution of (2.17) the propagator is given for 
odd K by 

and for even K by 

(2.21) 

(2.22) 

Thus, the propagator (2.21) and (2.22) of the physical polarizations has well defined 
limit M + 0 and ultraviolet asymptotics S( p )  22% I / p .  

Let us consider the explicit form of the gauge condition (2.15) for scalar and vector 
fields. For the scalar field we denote the components of the field 4 ( p )  as 

Combining (2.4), (2.17) and (2.19) one finds that at M = 0 the gauge ambiguity reduces 
to 

The gauge condition (2.15) becomes 

1 

P 
P )  = P ,  7 P 2 . d  P )  
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and it  implies that quantum field q p , ( p )  has to be longitudinally polarized. This 
condition is fulfilled identically in the classical theory (2.4) with M # O  where q,,( p )  
is proportional to derivative of the scalar field q ( p ) .  The propagator of the field 4 ( p )  
is equal in this gauge to 

I A Korchemskaya and G P Korchemsky 

(2.23) 

A F t s r  o . s h r + i t l i t ; n n  nr motrirnr 1 1  K l  intn I1 17) gnrl (1 111) ..IP nst +h*+ :n Ihn - ~ C C ~ P ~ ~  '...... I"""..."..".. -. ........--- .... " "..I -.&,, ... ... L.... 

theory gauge transformations have the well known form 

A,( P )  + A,( P) + P& P) 

p,A,(p)=p&,(p)=O. 

F,( P) -, F,( P ) + P,S'( P) 
and the gauge condition (2.15) leads to the Lorentz gauge 

As in the previous case the same condition follows from classical equations of motion 
(2.5). The propagator of the field 4 ( p )  in this gauge is given by 

(2.24) 

!t is ixte:esting !a recagxize :ha: the e!ezen: S , , ( p ) / M  of this matrix is equa! to the 
propagator of the field A,(p) in the Stueckelberg theory [lo] 

a-0. 2 1 
~P=+(J ,A,  - J , A , ) ~ + $ M * A ; + ~  (d,A,) 

At the same time, in the theory without a gauge fixing term the propagator of the -.-- c-,> :" 
"CL.,UI LlCl" 1J 

and it has all the problems pointed out before. 

3. Propagator and effective action as sums over random paths 

I n  the previous section we dealt with free fields. Let us generalize the consideration 
of interacting fields as follows. We introduce the interaction of the field $ ( p )  with 
nonabelian gauge field A,(x) by replacing the ordinary derivatives of +(x) by the 
covariant (or iii  ihe iiioiiieiiiiiiii i ep iesentah i  p p + p a + A a ( ~ ) )  i i i  the eqi;Zioii~ 
of motion (2.2), in  the action (2.3) and in the gauge condition (2.15). However, the 
covariant derivatives d o  not commutate ([De, D,.] = -iF,,,,) and we have to take care 
of the ordering of covariant derivatives in all above relations. It is possible to find the 
proper ordering only in the special cases K = O  and K = 1 but for higher K 2 2  we 
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come across the known consistency problem for interacting higher spin fields. To avoid 
this difficulty one assumes that A,(x) is a pure gauge field. The action of thus defined 
theories is invariant under gauge transformations 

A,(x)+ U+(x)(A,(x) +id,) U(x), d ( x ) -  U(X)d(X). 

The propagator and the effective action of interacting fields of an arbitrary spin 
d ( p )  in the x-representation are defined analogously to (2.20) 

s ( x , y ; A ) = ( x l ( H ( r ) + i M ) - ' l y ) = - i  dTe-TM(xle'rH'"'Iy) (3.1) Iom 
! 

and 

U ' [A]=-Tr log(H(r )+iM)=-  -ee-7MTr d'x(xleirni"'~x) (3.2) 

where 

1 
H ( ~ ) = ( ~ . ~ ) + - I I , , ( ~ )  r,, = p,, + A,(x) = iJ, + A,(x) a + 0. (3.3) a 

The expression ( ~ l e ~ ~ " ( ~ ) l y )  entering into (3.1) and (3.2) can be treated [ l l ]  as a 
matrix element of the evolution operator for a spinning particle with Hamiltonian H. 
Then, (XI eCrnly) being an amplitude for a particle to go from point x to y at a proper 
time T is equal, following Feynman [12], to a path integral over the phase space of 
a particle [ l l ,  13,141 

e iTH(p+Af ' ' ) I  I r ) = l x % P e x p ( i  lp,, dx*A,(x))4P,I  (3.4) 

where the integration is performed over all x-paths 
and the integral over unrestricted momentum paths is factorized into 

between the points x and y, 

U[P,I= 9 p ,  exp( -i I o r d f ( p .  XI) Texp(i  I n r d t  H ( p ) ) .  (3.5) 

The matrix H (  p )  is defined as 

1 1 
H ( P )  = ( P ,  r) +- I I , ( P )  = p n + ( p )  - P ~ - ( P ) + ;  (n,(p)+ a w  (3 .6)  a 

where (2.18) and (3.3) are used. 
To calculate the path integral in (3.5) we have to regularize the integrand for large 

values of momenta by inserting the ultraviolet cut-off factor [13] exp(-jl  df E ( t ) p ( f ) ) ,  

E (  f ) + O  into the RHS of (3.5). Then, dividing time interval [O, TI into N equal pieces 
the path integral A[P,.] is approximated as  

N 

M[P,.]= lim n U[X(ir)l 
N-- , = I  

(3.7) 
T 

T=N. &[Xi] = d'p exp( -i( p ,  X ) T +  i H (  p ) T  - EpT)  I 
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Using the identity e iH(”)‘= n + ( p )  eiP‘+n-(p) e-’”‘+no(p)(1 + ~ ( 7 ) )  eir” following 
from (3.6) one finds in the limit a, E - 0  up to unessential factor 

I A Korchemskaya and C P Korchemsky 

~ [ x ] = ~ ( 1 - X i 2 ) ~ + ( x ) . ; ~ ( 1 - x ’ )  1 l i ,  a ) ( x , a l  (3.8) 
‘,=I 

where lx, a )  are the eigenstates of operator (x r) 
a =  1, .  . . , r (x . r)lx, a ) =  lx, a )  (3.9) 

corresponding to the degenerated eigenvalue A = l x l = l  and r is the degree of 
degeneracy of this eigenvalue 

(3.10) r =Tr  n+(x) = i T r ( ( i .  I ‘ ) K  +(x.  I ‘ )K+‘) .  

After substitution of (3.8) into eq. (3.7) we obtain 

and the infinite product of projectors in the RHS is known as the Polyakov spin factor. 
One starts the evaluation of the spin factor by finding two equivalent representations 

for it. Let us consider two neighbouring factors I I + ( x ( t + S f ) ) I I + ( x ( t ) )  in the infinite 
product of projectors. After substitution of the decomposition II+(x) = Xi= , lx ,  a)(i, a1 
the product II+(x( f +St))n+(x(f))  reduces to the following scalar product 

( x ( f + S r ) , a l x ( t ) , b ) = S . b - S f  x ( t ) , a  - x( t ) ,b  +S(St’). ( 1 %  ) 
As a consequence, for the infinite product of projectors one gets 

A[p,l = S(1 --x2)lx(T), a)(x(o), bl[Tex~(-i@(PJ)l,h (3.11) 

where the notation is introduced for a matrix of an order of I 

(3.12) 

depending on the path P, and known as the non-Abelian Berry phase [2-41. Here, 
in the second expression integration is performed along the path {x*( t ) ,  t E [0, TI) on 
the sphere S’ and the vector field 

(3.13) 

is ihe Berry conneciion. 
The representation (3.1 1) possesses non-Abelian gauge invariance. The origin of 

this invariance is the following [4]. There is an ambiguity in the definition (3.9) of the 
eigenstates: lx, a)+ Vh&, b), where V + V =  1 and matrices V belong to U ( r )  group 
with r being defined in (3.10). Under this transformation the LHS of(3.11) is unchanged 
but the Berry connection is transformed as non-Abelian gauge field: sP+(x)+ 
V + ( d , , ( x ) -  iJ/Jx,,)V One has the following relation 

a .  - i  - /x, a ) =  d~(x ) l x ,  b)+%T(i) lx ,  a) 
ax, 

where W“(x)  is non-Hermitian vector field and /i, a) are the eigenstates of the operator 
( x ’  r)/lxl corresponding to the remaining eigenvalues A- = 0 and A., = -1. It implies 
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that derivative of the state lx, a )  does not belong to the subspace of the eigenstates 
{lx, a). a = I , .  . . , r ) .  Using this property one finds the strength of the Berry connection 
as 

g$,(i) = d , d ~ b - J , . d ~ b + i [ d , , ,  dCp,lah = -i((B:)""%f - ( % ~ ) " " % ~ h ) .  

To evaluate the field %r(x) we rewrite (3.9) as (x.r)lx, a ) = l x l l i ,  a) differentiate it 
both sides over i,. and multiply by the state (x, al. Then one obtains 

and this expression is valid for arbitrary vectors x+. Thus, the field strength is expressed 
as 

mah I .I\ 1 L.~ I_ /.- ,~_\  , - , ~ . ~ \ \ n  I . . .  , .% , - , . \ > -  , . . \  (;.id) 

where the projector IIn(x) onto zero modes appears here only for K z 1. It will be 
demonstrated at the end of section 4 that, with the explicit form of T,, matrices being 
taken into account, (3.13) and (3.14) describe field created by monopole with charge 
equal to spin. 

m I I u L I I G I  rGpLcbcrrLauurl ,U1 L11S spu, IdU", wc I , , ,"  usmg LllC rurrowmg lrlallull 

proven in the appendix 

S#'" (X)  = - - 4i2w all F ~ 4 1 1 n ~ X ) ~ ~ l L ( x 1 ) l  - Y u ~ 4 ~ ~ n ~ x ~ t i i ~ ( x ) ) i  J X ,  01 

A - - . L - -  ----...-... :.- P._ .L. .-:- r.._._ ~... C ~ . J  .L. C . , . ~ ~ ~ ~ . ~ ~  ~ ~ - 1 - . 1 . _  

n+(x( t + S t ) ) I T + ( x (  t ) )  = (1  -iZ"&,,upxuxQSl)II+(x( 1 ) ) + O ( S t 2 )  (3.15) 

where Z, are the generators of the reducible representation of SO(;) group in accord- 
ance with which the field 4 ( x )  is transformed. Then, the infinite product of projectors 
ir - a - l q e e A  h . r  
10 1 Cp'Y'C" ", 

A [ P , ]  = S ( l  -X')T exp -i d t  E+e,,&X,, I I + (x (O) ) .  ( J"T 1 
For spinning particles with Hamiltonian (3.3) matrix XG is equal to the spin part of 
the angular momentum M ,  = ~,, , .~x~.rr,  +Z+.  Therefore, the path-ordered exponential 

of a spinning particle under its motion along path P,,,. The explicit form of the spin 
matrices at K = 0 and K = 1 is I,, = i&+v,,[ru, I',] but the analogous expressions for 
K 2 2  are more complicated due to non-Hermiticity of r' matrices. Multiplying both 
the sides of (3.11) and the last equation by state lx(O), b )  one finds the relation 

. .  :- *L:- " - - - ~ " " . ~ ~  .^ *.. " ..-...4..,,* ,..-:..c..:.-":...", _,..-. ,.T*L- ... "..^F....^.:^- 
111 L l l l J  G'"p1cJJ1uL1 13 cqu'l, ,U a p,uuubL U L  1II111IIIciD1111'2.1 I U L ' l L I U I I J  U 1  ,tLG W'l.YCI"IILLI"II 

T 
T - - - ( ~ :  r d t ~ + ~ ~ ~ p ~ ~ i ~ ~ l ~ ~ n ~  )[-,U,, " I  h\- ~ 1 - \ .  1.x~) I ,  ",I , \ r T P v , / _ i m / ~  --I,\ .-\. . Y > , l l o h  

-+'\ 'In 
which admits the following interpretation. The state l i ( O ) ,  b )  describing the spinning 
particle with momentum p ,  = -i&M and mass M acquires non-trivial Berry phase 
after parallel transport along path Pxy from point x(0) = y to x( T )  = x. 

Finally, combining (3.4) and (3.11) one obtains the following representations for 
.L̂  --^- "-"*,.- ""2 tL- ",.ti,." 
L11S p"up'pL"L -,,U L 1 1 S  C L L Z L L L l b  P C L . " . .  

S ( x , y ;  A) = -i [:dTe-TM 1,' axs S ( l  - x 2 ) P  exp 
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and 
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xTr[ T e x ~ ( - i @ ( P ~ . ~ ) ) ] .  (3.16) 

The spin factor @ ( P )  and the states lx, a)  are the only undetermined quantities in these 
relations. 

4. The evaluation of the spin factor 

The spin factor @(PI and the states lx, a )  depend on the spin content of the quantum 
field b ( p )  and can he found by solving eq. (3.9) with definition (2.9) of r'-matrices 
for an arbitrary K. 

Spin J = O .  For the scalar field one gets from (2.4) and (3.10) that r =  1 and (3.9) is 
replaced by 

The normalized solution of this equation is 

since x2 = 1. 

Sp;n .i= f. For Dirac iermions one has r = i ;  T y  are Pauii matrices and tile soiution 
of equation (3.9) is well-known as  a coherent state for the S U ( 2 )  group 

where x = (sin e cos 'p, sin 0 'p, cos e) .  The spin factor for Dirac fermions is equal to 

with C(t) being the torsion of the path 

Spin J = I .  For the vector field one  finds from (2.6) and (3.10) that r = 2  and, hence, 
the spin factor @(P) is a matrix of second order. With the solution of (3.9) chosen in 
the form 
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equation (3.9) can be rewritten as 

(4.2) 

or  in the vector notation 

[ l ixe,]=e,  [e, x 13 = e , .  (4.3) 

The solutions of these equations are two real orthogonal unit vectors e, and e2 together 
with tangent vector x forming the right oriented basis in  the three-dimensional space 

(e,,  e,) = 8, (e, .  i )  = 0 

As a result, two orthonormal eigenstates lx, a )  are 

(4.4) 

Any other solutions of (4.2) can be obtained from these ones after rotation of the 
vectors e, and e2 in the plane normal to the vector x. After substitution of (4.4) into 
(3.12) we obtain for the spin factor 

@,=,(P)=-tu,  dt(e,e2-e2e,)  s: 
where 

U*=(; ;> 
is the Pauli matrix. To understand the geometrical meaning of the integral, one uses 
the Frene equations 

i = b e .  I f  e; = - CE,jej - b, i  

from which it follows that the spin factor for the vector field is proportional to the 
torsion of the path 

7 

@ , = , ( P ) = - u 2 j o  d t C ( f ) .  

Spin J = z .  For the spin.; field (2.8) and (3.10) imply that r =  1. Equation (3.9) is 
replaced by 

( x .  r)&; = IX; p )  

with the matrices r’’ being defined in (2.8). Let us notice that this equation describes 
the classical spin.$ field (2.2) with mass M and momentum p = - i M i  Therefore, lx; v )  
obeys the Rarita-Schwinger equation (2.7)t 

2lX; 9) = jx; I*) uyx; p) = 0. (4.5) 

The solution of the first relation has the form 

l i ;  Ad= C,lX) (4.6) 

t These equations follow from the previous relation ailer multiplication of both rider by up and .tu 
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where the vector lx) wasdefined in (4.1). From the second equation, using the identity 
~ & ~ ~ x ;  U) = (i&&v,,xo -xa,,”)Ix; U) = 0 one gets the relation for the vector C,. 
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C,= -ie,,v&,Cu. 

After the decomposition of C,, on real and imaginary parts 

1 C =- ( e ,  + ie,) (4.7) 

the vectors e, and e2 satisfy the same equations as before in (4.3). Two linear indepen- 
dent solutions of (4.3) give us two vectors C, differing from one another by non-essential 
factor. Thus, the spin factor for the spin-; field is equal to 

a 

The explicit form of the state (4.6) enables us to generalize the evaluation of the 
spin factor for higher spin fields. The crucial point is that for an arbitrary spin J the 
states lx, a )  entering into (3.9) are the solutions of the classical equation of motion 
(2.2) for the fields with spin J, momentum p = -iMx and mass M. 

Higher halfinleger spins. For an arbitrary half-integer spin J = f +  Z the wave equations 
have the form [9] analogous to (4.5) 

( ; - l ) l i , p l  .. . pz)=ul”’ lx ,pl l l . .  .pz)=O 

lx, . . p, .  . p,. .) = lx, . . p,. . p, .  .), lx, . . p , .  . p, . .) =o. 
The normalized solution of these relations is 

lx; P I . .  . pz)  = /X)C,, . . . c,, (4.8) 

where the vectors lx) and C, were defined in (4.1) and (4.7), and zero trace of state 
is achieved due to the property C2 = +(e, +ieJ2 = 0. Thus, for fields with an arbitrary 
half-integer spin the spin factor is equal to 

and is the product of the spin and the torsion of the path. 

Higher integer spins. The classical fields with an arbitrary integer spin J = Z  are 
described by symmetric traceless real tensor fields A,, ...,, and F,,.. , , ,  forming the state 
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and satisfying the equations [91 analogous to (4.5) 

E ~ , , . ~ ~ ’ . A ~ ~ ~ . . . ~ , - F ~  ,... u,=O ~r,.U~J,l , , . . . , ,  + A,, ...,., = 0. 
The system has two nontrivial solutions 

iIi 1 
fi A, ,... ,,, =- ( C e , .  . . C:, + C,, . . . CG,) 

Hence, for fields with an arbitrary integer spin J the spin factor is equal to 

J 
2 

= - - ( uJb JOT dt(e ,  e2 - e,e,) 

PT 
= - J (u , )“~  dr C ( t )  

0 

(4.10) 

(4.1 1) 

Thus, the eigenstates and spin factors entering into the expressions (3.16) for the 
propagator and the effective action are given by (4.8) and (4.9) for half-integer and 
by (4.10) and (4.11) for integer spins. 

Returning to the Berry connection (3.13) we note that for half-integer spins r =  1 
and SaLb(x)  is the Abelian gauge field. In the simplest case of Dirac fermions ( K  = 0) 
the field strength (3.14) is given after substitution n,(i)=f(l*(x. v)) by 

1 1 
?FwV(x)= - ~ T r ( ~ + ( x ) u ~ ~ - ( x ) u ” - ~ + ( x ) u ” ~ - ( x ) u ~ ) = ~ & ~ ” ~ x ~  

4x 

where U,, are Pauli matrices. One recognizes in this expression the strength of field 
created by monopole with charge $ placed at the point =O. Comparing (3.12), (4.9) 
and (4.11) we notice that generalization of this result to arbitrary half-integer spins J 
can be achieved by changing of monopole charge from f to J, but for integer spins J 
one has to replace monopole charge by matrix (-Ju2). 

5. Parity of the effective action 

The spin factor enters into the effective action (3.16) as Tr[Texp(-i@(P))] and it is 
equal to exp( -iJ I,’ d t  C (  I))  for half integer spins and 2 cos(J I: d t  C (  1 ) )  for integer 
spins. Such a difference between spin factors is a manifestation of the parity anomaly 
appearing in the effective action of odd dimensional fermions. 
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Before examining the parity of the effective action (3.16) we have to take care of 
ultraviolet divergences in the perturbation theory expansions of W[A]. In the path 
integral representation (3.2) it is the singularity of the integration measure 
I,"(dT/ T )  eCrM and the matrix element 1 d'x(x1 eiTHIx) in the limit T-0 that is the 
source of ultraviolet divergences. Hence, the summation over loops with vanishing 
length T contributes to ultraviolet divergences. To regularize the effective action, one 
uses the gauge-invariant Pauli-Villars regularization 

W,,[A] = -log det((D. I-) + i M )  +log det(( D .  T)+iM,,) 

with regulator mass Mpv>> M. After substitution of (3.16) into this expression the 
integration measure over T is replaced by J,"(dT/T) eCrM(l and has well 
defined behaviour in the limit T +  0. 

In the lattice approximation the regularized effective action reduces to 

W[A]=z exp(-ML(P))Tr[Texp(-i@(P))] Tr P e x p  i 

where summation is performed over all closed paths in the three-dimensional Euclidean 
spacetime. Under parity transformations defined as 

dx"A,(x) 
P ( f p  1 

P :  xr = (XI. x2, x3)+.,'= (-x,, x2, x3) 

A,(x)+ A,P(x)=(-Ai(x), AAx), A,(x)) 
the length L of the loop and P-ordered exponential are unchanged but the torsion 
C ( f )  changes in sign. The spin factor being the only source of anomalous parity 
properties is even function of the torsion only for integer spins. Thus, the effective 
action of integer spin fields is scalar but the effective action of half-integer spin fields 
is transformed non-trivial and is decomposed for an arbitrary mass M into a sum of 
scalar and pseudoscalar contributions [15]. 

6. Conclusion 

It is well known that quantum scalar field describes randomly walking spinless relativis- 
tic particles in the path-integral approach. The generalization to spinning particles is 
achieved by introducing the path depending 'spin factor' into the path integral for 
scalar particle [l]. It turns out that for particles with an arbitrary half-integer spin the 
spin factor coincides with the Abelian Berry phase and is equal to a product of the 
spin and the torsion of the path. For particles with integer spin the spin factor being 
the non-Abelian Berry phase is a product of the Pauli matrix, spin and the torsion of 
the path. Different properties of the spin factors for integer and half-integer spins are 
the manifestation of the parity anomaly appearing in the effective action of three- 
dimensional fermions. 

The generalization of the above results to higher dimensions using methods [7] is 
straightforward. 
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Appendix 

Under rotations of the vector p ,  with angle U,, the field m ( p )  is transformed in 
accordance with a reducible representation of the SO(3) group 

& ( P I +  exp(iY‘o,)d4p) 

where X+ are generators of the representation. The Lorentz covariance of (2.2) implies 
that X+ obey the equation 

Replacing vectors p ;  and p,, by the tangent vectors x r ( f  + Sr) and x+(f), respectively, 
one gets using (2.17) 

n+(x(t+st)) = un+(x(f))u+ U = exp(iX:’w,) (Al) 

with oIL being the angle between the vectors x,(f + S t )  and x,( 1 )  

Let us denote the product of two projectors as follows 

n+(x(t+st))n+(x(f)) = V I I + ( i ( t ) ) .  (A21 

Then matrix V satisfies the equation 

n+(x(t+st))n+(x(f))n+(x(t+sr))= vn+(x(f))v+ (A31 

whose LHS after substitution of Il+(.i)=ZL-l lx, U ) @ ,  a1 in the limit Sf + O  i s  equal to  
II+(i( f+ S t ) )  + O ( 8 t 2 ) .  Hence, up to O(8t’) terms ( A l )  and (A3) coincide and one finds 

(A41 V =  U = 1 + iX*o,+b( St*)  = I -iXPe+,,&xpt+ O(8t’). 

Combining (A2) and (A4) we obtain (3.15). 
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