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Abstract. The path-integral representations for the propagator and the effective action of
three-dimensional Euclidean fields with arbitrary spins are found which differ from the
analogous path-integrals for scalar particles by the Polyakov's spin factors. For half-integer
and integer spins the spin factor coincides with Abelian and non-Abelian Berry phase,
respectively.

1. Introduction

Recently, Polyakov has suggested [1] that in three-dimensional spacetime elementary
excitations described after the second quantization by Dira¢ fermion fields could be
interpreted as randomly walking spinning particles with torsion. In particular, the
propagator S(x, y; A) of three-dimensional Dirac fermions with mass M, interacting
with non-Abelian gauge field A, (x) is equal to the following sum over random paths

F,, between the points x and y

S(x,y; A)c ¥ exp(—ML(P,,)) exp(—iJP(P,))P exp(i J dx* Au(x)) {1.1)
Py, Py

where J =1, L(P,,) is the length of the path, P-ordered exponential takes into account
the interaction of a gauge field with current induced by a particle moving along path
P, ®(P,) is the torsion of path [1] or, equivalently, the abelian Berry phase [2-4],
one-dimensional Wess-Zumino-Novikov-Witten term [5]. Later, the above relation
has been proven and generalized to higher spacetime dimensions [6-8].

Let us consider the rus of (1.1) for an arbitrary J and treat it as an amplitude for
a spinning particle to go from the point x to y. Then, it turns out that [7]

(1) the parameter J can have only quantized (integer or half-integer) values

J=0,31,...
{it) the wavefunction of a spinning particle after rotation along some axis with
angle 27 is trar as
Y(x) > (—1)7¥(x)

(iii) for integer (or half-integer) J identical spinning particles possess Bose (or
Fermi) statistics.
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It is natural to suppose that the parameter J in (1.1) is the spin of spinning particles
which after the second quantization are described by quantum fields with spin J It is
this statement that is proved in the present paper. The representation for the effective
action and the propagator of three-dimensional Euclidean interacting fields with spin
J is found as sums over random paths for a spinning particle with torsion.

The consideration is based on the use of the well known approach [9] in which
classical fields with arbitrary spins obey the wave differential equations of first order.

2. Quantum fields with an arbitrary spin

In D-dimensional Euclidean spacetime the components ¢,(p) of the classical field
with spin J and mass M have to satisfy in the momentum representation the Kilein-
Gordon equation

(p*+ MM, (p)=0. (2.1)

It is well known [9] that the Klein-Gordon equation can be rewritten as a system of
linear differential equations of the first order which in the momentum representation
has the form

((p-D)+iM)p(p)=0 (2.2)

where ¢{p) is a column consisting of fields ¢.(p) and their first derivatives, (p-I')=
p*T, and I',, are some matrices. The action whose variation leads to {2.2) is

y=jd”p d(—p)((p-T}+iM)¢(p) (2.3)

where ¢(p)=¢*(p)T is a ‘conjugate’ field and matrix T is a solution of the relation
[r=IT,.

In the following, we restrict ourselves only to three-dimensional fields. Then, the
massive scalar field ¢(p) is described by (2.2} provided that

O p o B
R _{° p) =( e{p) )
D=, 0 (p 0 V=i M p) (24)

P

where p=(p,, p», p3} is three-dimensional momentum. The classical massive vector
field satisfies the Proca equations

F..(p)=—~ip,A,(p)+ip,A.(p} p.F..=—~iM’A,(p) (2.5)
which are equivalent to (2.2) for

N =(A,z(p)) >

(r ”“(@-s) f ) #0 =y (26)

where (p- €),, = €,,,p. and F,(p) = -(1/2M)z,,,,F., is the vector dual to the strength
tensor. Fields with spin-3 obey the Rarita-Schwinger equations

(priM)g.(p)=0 v (p)=0 (2.7)

'
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where p=p,y* and y* =0" are Dirac matrices coinciding in D=3 spacetime with
Pauli matrices. To replace these equations by (2.2), one has to put

(P T =488 — 0P ~i€,4,,0,) $(p)= 1t p) (2.8)

where spinor indices of the I'*-matrices are imposed.

For fields with an arbitrary spin the matrices ['* are restricted by the condition that
all components of the field ¢(p) have to satisfy the Klein-Gordon equation {2.1). For
massive fields (M # 0) this condition is fulfilled if one imposes the following equation

on matrices I'* 1
(p-T)Y**2=p(p-I)¥ (2.9)

where K is a non-negative integer number and p, is an arbitrary three-vector. At
K =0 the solutions of the equation are Dirac matrices. At K = 1 the equation has non-

trivial Hermitian solutions different from Dirac matrices provided that I'*-matrices are
degeneratedi

_ r_, .2 N — +
K=1 (p-Ty=p(pT) det(p-T)=0 {(p-T) =(p- 1) (2.10)

At K =2 (2.9) has non-trivial solutions different from the previous ones provided that
I'*-matrices are degenerated and non-Hermitian

K=2 det{(p-T}=0 (p-T) #(p-T).

It can be easily verified that matrices {2.4) and {2.6) obey (2.10) but matrices (2.8)
correspond to the K =2 case of (2.9).

The parameter K entering into (2.9) has a simple meaning [9]. It determines the
spin content of the field ¢({ p). In general, ¢(p) can be decomposed into a sum of two
fields with spins J=(1+ K}/2 and |(l - K)/2|8 For example, at K =0, (2.2) and (2.9
describe Dirac fermions with spin J’ =41 at K =1 one has J=0,1 and the field ¢( p)
is a sum of a scalar and a vector field (a scalar field and its derivatives in (2.4) or a
vector field and vector dual to the strength tensor in (2.6}).

Thus, the theory (2.3) with I'*-matrices (2.9) gives us an equivalent description of
classical fields with an arbitrary spin.

After quantization of the theory (2.3) one defines the propagator of a field ¢(p)
as a solution of the following equation

{((p-TY+iM)5,(P)=1 (2.11)

whose solution is [9]

1 : X i\" -1 2 2
SD(P):W((P'F)_IM"' > (}\1}) (p-D)" ({(p-TY—p )) (2.12)

n=1

where the parameter K has appeared beforein (2 9) We notice that, first, the propagator

has a dangerous ultraviolet asymptotics Sq( p} £ p"*" and, second, it has a singular-

ity in the limit M - 0.

T 1t is not the only possible equation, There is another one [9] called "‘multi-mass’ equation,
1 Moreover, the Lorentz covariance of (2.2) enables us to replace these equations by the Cemmer-Duffin
ones [9]

el e+ PeTrs = g2 1 + 71,
§ This value appears if the field ¢{ p) is transformed in accordance with the reducible representation of the
SO(3} group.
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To understand the reason of this effect one notes that {2.11) takes into account the
propagation of elementary excitations whose wavefunctions are eigenstates of the
operator (p-I'} and (p-T)"

(p- T)|Ay=AJN). (2.13)

It follows from (2.9) that the eigenvalues A are the solutions of the equation
AK(A*=pH=0or

A=0,+p, —p. (2.14)

The eigenvalues are in general degenerated and the value A =0 appears for K =1,
Then, the classical equations of motion (2.2) can be rewritten as (A(p)+iM)|A)=0 or

(A*(p)+ M)Ay =0.

We conclude that for M #0 among all the eigenstates of the operator (p-I') only
those corresponding to non-zerc A satisfy the Kiein-Gordon equation {(2.1). The
eigenstates |A = 0) called zero modes do not obey (2.1). Nevertheless, after quantization
the zero modes contribute to the propagator. As a result, the propagator (2.12} has
both dangerous ultraviolet asymptotics and singular limit M - 0.

Thus, to avoid these difficulties, one imposes the additional constraints on the field
¢( p) forbidding the propagation of zero modes

o(p)e(p)=0 (2.15)
where II,( p) is the projector onto degenerated zero modes of the operators (p-I') and
(p-T)y t.

To find the explicit form of the projector II,( p) one notes that although the operator
(p-T)is not Hermitian for K = 2 the operators (p-I)*/p® and (p- IN*™'/p**' obey
equations like A*= A and in accordance with (2.10) can be chosen to be Hermitian.
Hence, using (2.13) and (2.14) these operators are expressed as

(p-D)¥=p*TL(p)+(—p)*TI (p)
(p- DY ' =p* 'L(p)+(-p)* ' TI_(p)

where TI.(p) are projectors onto eigenstates corresponding to the degenerate eigen-

values A = £p. The Hermiticity of the above operators implies that non-zero modes of

the operators (p-T) and {p- I'Y" coincide and T ( pYIT_(p)=T1.(p)s{p)=0.
Adding the ‘completeness’ relation

1=H.(p)+T_(p)+Ip)
to (2.16), one finds
TL(p)=3(e- ) +{e- T)*"") M_(p) =TL.(-p),

K 13K
DS, e 12D pepe 1D

2

(2.16)

My(p)=i—(e-D*

The operator ( p-T') can be decomposed as follows:

(p-T)=pl.(p)-pll(p)+ & (2.18)

t For K =2 the operator { p- I') is not Hermitian and zero. modes of (p-I') and {p- I'y* are different and
form, as will be proven below, the orthonormal basis in the subspace of zero modes,
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where # is a non-Hermitian operator acting in the subspace of zero modes:
PIp)=M.(p)P=0 Pl p) =Lo(p)P =P

and (2.16) implies that 2% =0.

To understand the meaning of zero modes one has to consider the action (2.3} in
the limit M = 0. In this limit the properties of the theory are changed since the action
(2.3) becomes invariant under the following gauge transformations

B(p)» d{p)+To(p)P*'¢(p) (2.19)

with £(p) being an arbitrary state, Then, under quantization of the massless theory
the gauge condition (2.15) must be put on the field ¢( p) to single out the only element
among all the gauge equivalent fields (2.19). One notices that these transformations
affect only zero modes of field ¢( p). Thus, zero modes describe degrees of freedom
of the quantum field ¢( p} which become gauge in the limit of vanishing mass M.

After imposing the gauge condition (2.15} one gets the following equation for the
propagator:

((p-l")+iM+£1'Io(p))S(p)=l a-{ (2.20)

The solution to this equation is

_ ~ (p-T)-iM TN(p) I_{p)
S(p) =1L p) +TI_(p)}Se( p) = (IN.( p) +TI_(p)) A ME ptiM p—iM

where So( p) was defined in (2.12) and the identity TI.(p)((p' ')’ —p?) =0 following
from (2.9} and (2.17) was used. After substitution of (2.17) the propagator is given for
odd K by

ple-T)* —iM(e- )k

S(p)= M p=pe (2.21)
and for even K by
. F K=+1 __ 'M . r K
s(py =2l D —iMle: D p=re (2.22)

p2+ M2
Thus, the propagator (2.21) and (2.22) of the physical polarizations has well defined
limit M - 0 and ultraviolet asymptotics S(p) 2 1/p.

Let us consider the explicit form of the gauge condition (2.15) for scalar and vector
fields. For the scalar field we denote the components of the field ¢(p) as

¢(p )z(:f(?))‘

Combining (2.4}, (2.17) and (2.19) one finds that at M =0 the gauge ambiguity reduces
to

¢P(p)+¢#(p)+(aw—”—;§-‘-’) £4p).

The gauge condition {2.15) becomes

1
0.(p)=p. 7 pe.(p)
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and it implies that quantum field ¢,{(p) has to be longitudinally polarized. This
condition is fulfilled identically in the classical theory (2.4) with M #0 where ¢,(p)
is proportional to derivative of the scalar field ¢(p). The propagator of the field ¢( p)
is equal in this gauge to

S(p) =3 ('iM ? ) (2.23)

p)= . .
p*+M*\ p —iM{(p®p)/p’

and up to unessgential factors the element S,,( p) of this matrix coincides with scalar

propagamr.
For a massive vector field one chooses the field ¢(p) in the form

_ A»(p))
$(p) (Fu(p) :

Aftar cuhetitutinn af matricac (2 £) inta (21?

FRIRLI Suvirliiue Vil Vi andniibeld (L0 g

theory gauge transformations have the well known form
A (p)=>Ap)+p.E(p) E.(p)=» F.(p)+p.£(p)
and the gauge condition (2.15) leads to the Lorentz gauge
PuAP)=p.F.(p}=0.

As in the previous case the same condition follows from classical equations of motion
(2.5). The propagator of the field ¢{(p} in this gauge is given by

\..,
s
3
oL
Iy
2
o
-~
=
)

1 (—i{M/pHp’I—p®p) (p-e)
S(pl=—""0> 2( . 2y 2 (2.24)
ptM (p-e) —i(M/p W pT-pBp)
It is interesting to recognize that the element §,.{ p)/ M of this matrix is equal to the

propagator of the field A,(p) in the Stueckelberg theory [10]
1

££’=£(5#Ay—a,Au}2+%M2Ai+2—(aPAP)2 a-0.
o

At the same time, in the theory without a gauge fixing term the propagator of the

nnnnnn falA
vector hieid l.)

(0.2
p2+M2 uy MZ

and it has all the problems pointed out before.

3. Propagator and effective action as sums over random paths

In the previous section we dealt with free fields. Let us generalize the consideration
of interacting fields as follows. We introduce the interaction of the field ¢(p} with
nonabelian gauge field A,{x) by replacing the ordinary derivatives of ¢{x) by the
covariant ofiés (ur in ifie momeniuiin lcplcacumuun Pu= P, + AL \4” in the equa;ions
of motion (2.2), in the action (2.3} and in the gauge condition (2.15). However, the
covariant derivatives do not commutate ([D,, D.]=~iF,.) and we have to take care
of the ordering of covariant derivatives in all above relations. It is possible to find the
proper ordering only in the special cases K =0 and K =1 but for higher K =2 we
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come across the known consistency problem for interacting higher spin fields. To avoid
this difficulty one assumes that A,(x} is a pure gauge field. The action of thus defined
theories is invariant under gauge transformations

Au(x¥)> UT(x)(Au(x) +i3,) U(x), #(x) > U(x}(x).
The propagator and the effective action of interacting fields of an arbitrary spin

¢(p) in the x-representation are defined analogously to (2.20)

o0

S(x, y; A) =(x|(H(m)+iM)|y)=—i J dT e ™{xle™ ™yy (3.1

0

and

W[A}=—Trlog(H(7)+iM)= —Lm —Te‘”” TrJ d’x{x| &™) x) (3.2)
where

H(m)= (- F)+:l—l'[0('nr) 7y = Put A (x) =10, + A, (x) a0 (33)

The expression (x{e'"™ ™|y} entering into (3.1) and (3.2) can be treated [11] as a
matrix element of the evolution operator for a spinning particle with Hamiltonian H.
Then, (x| e'"™|y) being an ampiitude for a particle to go from point x to y at a proper
time T is equal, following Feynman [12], to a path integral over the phase space of
a particle [11, 13, 14]

(x| e THP+AT =J. @quexp(i J dx”A#(x)) M P ] (3.4)

v -

X

where the integration is performed over all x-paths P, between the points x and y,
and the integral over unrestricted momentum paths is factorized into

T T
M[ny]='( Dp, exp(wiJ’ dt(p-x)) Texp(iJ. dtH(p)). (3.5)
0 q

The matrix H( p) is defined as

44

H(p)=(p D+~ T(p) = pIL,(p) ~pIL(p)+ = (o(p) +a®)  (3.6)

where (2.18) and (3.3) are used.

To calculate the path integral in (3.5) we have to regularize the integrand for large
values of momenta by inserting the ultraviolet cut-off factor [13] exp(—jg die()p(r)),
g(t}- 0 into the RHs of (3.5). Then, dividing time interval [0, T] into N equal pieces
the path integral [ P,,] is approximated as

P, 1= lim T] ML)
- (3.7)

P-i

M[i]=Jd3pexp(—i(p-Jt)'r+iH(p)7-£p7) T=—.

Z
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Using the identity """ =T1,(p) e +II_(p) e " +T,( p){1+ O(7)) ¢'"’“ following
from (3.6) one finds in the limit a, £ » 0 up to unessential factor

M[x]= 61— ¥L(%)=6(1 — %) él 1%, a)y(x, al (3.8}

where |%, a) are the eigenstates of operator (% T')
(X D)%, a)=|%, a) a=1,...,r (3.9

corresponding to the degenerated eigenvalue A =|%|=1 and r is the degree of
degeneracy of this eigenvalue

r=TrIL (%) =3Tr((%- [)* +(x- D)%™), (3.10)
After substitution of (3.8) into eq. (3.7) we obtain
M[PL1=8(1—x%) [I TL.(i(1))

reio, T}
and the infinite product of projectors in the rRHs is known as the Polyakov spin factor.
One starts the evaluation of the spin factor by finding two equivalent representations
for it. Let us consider two neighbouring factors TL.(x%(r+ 8:})IT,.(%(7)) in the infinite
product of projectors. After substitution of the decomposition IL.{(x) =X} _,|%, a) (%, a|
the product IL, (x(¢+ 8:))T1, (%(¢)) reduces to the following scalar product

k(e 81), a|lx(1), by=8,, — 5t <)€(t), a

dal. :
i x(1), b>+0’(8: 1.

As a consequence, for the infinite product of projectors one gets
M[Py]= 8(1~3*)|%(T), a){(0), DI T exp(—i®(Py,))]an (3.11)

where the notation is introduced for a matrix of an order of r

dt

depending on the path P,, and known as the non-Abelian Berry phase [2-4]. Here,
in the second expression integration is performed along the path {%,(t), t€[0, T]} on
the sphere §? and the vector field

X, b> =J- dx* 27 (%) (3.12)
P

a

T
B4 (P,) = —i j dr<3&, a

0

abr . L d
s&!'}f’(x)=—1<x,a Py

i

X, b> (3.13)

is the Berry conneciion.

The representation (3.11) possesses non-Abelian gauge invariance. The origin of
this invariance is the following [4]. There is an ambiguity in the definition (3.9) of the
eigenstates: |, @)= V,.|X, b), where V'V =1 and matrices V belong to U(r) group
with r being defined in (3.10). Under this transformation the LHs of (3.11) is unchanged
but the Berry connection is transformed as non-Abelian gauge field: &, (%)
V*¥(sd,(%)~i3/9%,) V. One has the following relation

X, o)

]
—ié;- i%, ay= AL (%)|%, by+ By (%)

where 8°?(x) is non-Hermitian vector field and |X, &) are the eigenstates of the operator
(% I")/|%| corresponding to the remaining eigenvalues A, =0 and A, = —1. It implies



Polyakov spin factor 4519

that derivative of the state |¥, a) does not belong to the subspace of the eigenstates
{|%, a),a=1,..., r}. Using this property one finds the strength of the Berry connection
as

Fih (%)= 8,50 = 8,540 +il L, 4,17 = —i((BL)" B~ (BL)“B).

To evaluate the field B5°(%) we rewrite (3.9) as (% - D)Ix, a) =|%|{%, @) differentiate it
both sides over %, and multiply by the state (%, @|. Then one obtains

DN i
x,a>— (I_Aa)w(x,all"u|x,a)

and this expression is valid for arbitrary vectors x,,. Thus, the field strength is expressed
as

BE(%) = wi<x, a

o
ax

i1

-
——

where the projector TIo(%) onto zero modes appears here only for K = 1. It will be
demonstrated at the end of section 4 that, with the explicit form of ', matrices being
taken into account, (3.13) and (3.14) describe field created by monopole with charge
equal to spin.
S . o T U « SPU U T UL T
!'\llUllICl leleCIlldUU] 11 UIC bplll 1daClor wWo II11a uslr g LIIC
proven in the appendix

I, (%(t+ 8L ((2)) = (1—i%%e %, L, 60T ((1) + 6(87)  (3.15)

where 3, are the generators of the reducible representation of SO(3) group in accord-
ance with which the field ¢(x) is transformed. Then, the infinite product of projectors

T

M[ny]=8(1—x2)Texp(—iI dt 3e,,, %, ',,)IL(JE(O)).

4]
For spinning particles with Hamiltonian (3.3} matrix £* is equal to the spin part of
the angular momentum M, =¢,,,x,7, + X, . Therefore, the palh ordered exponential
in this exl')i'ESSiGﬂ is Eqiial {0 a pluduw. of 1uﬁuucauua= rotations of the wavefunction
of a spinning particle under its motion along path P,,. The explicit form of the spin
matrices at X =0and K=11is X, =ie,,[I',,T,] but the analogous expressions for
K =2 are more complicated due to non-Hermiticity of I'* matrices. Multiplying both

the sides of (3.11) and the last equation by state [%(0), b) one finds the relation

which admits the following interpretation. The state |%(0), b) describing the spinning
particle with momentum p, = —ix, M and mass M acquires non-trivial Berry phase
after parallel transport along path P, from point x(0})=y to x{T}=x.

Finally, combining (3.4) and (3.11} one obtains the following representations for

Sy, A)=—~i | dTe ™ J Dx, §(1— %) P exp(ij dx* A“(x))
¥ P

0

x[%(T), axx(0), b|[ T exp(—i®(Pe,))]u
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and

W[A]= _J %?e‘TM J. d*x '{x Dx,8(1-%)Tr P exp(i § dx* Au(x))

] X

X T T exp(—i®(P.})]. (3.16)
The spin factor ®( P) and the states |%, a) are the only undetermined quantities in these
relations.
4. The evaluation of the spin factor
The spin factor ®(P) and the states |%, a) depend on the spin content of the guantum
field ¢(p) and can be found by solving eq. (3.9) with definition (2.9) of I'*-matrices

for an arbitrary K.

Spin J=0. For the scalar field one gets from (2.4) and (3.10) that r=1 and (3.9) is
replaced by

(O_ j\!x}=!x>.
\x 0/

The normalized solution of this equation is

) 1 /1
ly=—| ..
V2 \E
LTiewna tlan pemioe LComtone 17 179) Frw thhn cnalan Rald j0 aniia 1+
FICHVG, UL DML 140L0L L 0. 14 ) 101 LLIU dualal LI 13 syual v
T d. l T .
D, _(P)=—i de{x|—|x)=—=]| dex-%5)=0
0 dit 2)e
. v
since x“°=1.

Spin J=14. For Dirac fermions one has r=1; I'* are Pauli matrices and the solution
of equation (3.9) is well-known as a coherent state for the SU(2) group

cos 0/2
X)y=1{ . 4.1

%) (e"" sin 9/2) (4.1
where ¥ = (sin @ cos ¢, sin 8 ¢, cos 8)}. The spin factor for Dirac fermions is equal to

T T
v x>=§J drqa(l—cose)=;]’ dt C(1)

0 [}

CD,=1,2(P)=-—iJ' d:(:e

o

with C(r) being the torsion of the path.

Spin J=1. For the vector field one finds from (2.6} and (3.10) that r =2 and, hence,
the spin factor &(P) is a matrix of second order. With the solution of (3.9) chosen in

the form
% a)-*L (e,)
’ V2 \e,
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equation (3.9) can be rewritten as

(e ) -()

or in the vector notation
[¥xe]=e [e:xx]=e. (4.3)

The solutions of these equations are two real orthogonal unit vectors e, and e, together
with tangent vector ¥ forming the right oriented basis in the three-dimensional space

(e €)=28; (e, ¥)=0.

As a result, two orthonormal eigenstates |Jé, a) are

. 1 el) 1 (—ez) ‘ .
xsl == .X.', 2y=— . 4.4
I ) ‘/j (eg E ) \/i e, ( )
Any other solutions of (4.2) can be obtained from these ones after rotation of the
vectors e, and e, in the plane normal to the vector X. After substitution of (4.4} into
{3.12) we obtain for the spin factor
T

&, _,(P)=—30; j dt(e é,— e,é))

L]
( 1 0i>
(22 .

is the Pauli matrix. To understand the geometrical meaning of the integral, one uses
the Frene equations

where

X =be & =—Ceye;— bx
from which it follows that the spin factor for the vector field is proportional to the

torsion of the path

T
CD,,,(P):-—O'zJ dr C(1).

g

Spin J=2. For the spin-3 field (2.8) and (3.10) impty that r=1. Equation (3.9) is
replaced by

(% D), vy =% w

with the matrices I'* being defined in (2.8). Let us notice that this equation describes
the classical spin-3 field (2.2) with mass M and momentum p = —iMx. Therefore, |%; v)
obeys the Rarita-Schwinger equation (2.7)%

X% pwy=%; m) a¥|%; py=0. (4.5)
The solution of the first relation has the form

|%; )= Cp.l%) (4.6)

T These equations follow from the previous relation after multiplication of both sides by ¢, and X,
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where the vector |%) was defined in (4.1). From the second equation, using the identity

o, o W% vy = (16,”,, X, xau,)lx v) =0 one gets the relation for the vector C,
C.=— x,C..

€ pwp

After the decomposition of €, on real and imaginary parts
1 .
C =ﬁ (e, +ie) (4.7)

the vectors e, and e, satisfy the same equations as before in (4.3). Two linear indepen-
dent solutions of (4.3} give us two vectors C,, differing from one another by non-essential
factor. Thus, the spin factor for the spin-3 field is equal to

T d T d
0 0 dt

de
T
=%J de C(1).
0

T
J&>+%J‘ dt(eléz_ezél)
4]

The explicit form of the state (4.6} enables us to generalize the evaluation of the
spin factor for higher spin fields. The crucial point is that for an arbitrary spin J the
states |x, a) entering into (3.9) are the solutions of the classical equation of motion
(2.2) for the fields with spin J, momentum p = ~iMx and mass M.

Higher half-integer spins. For an arbitrary half-integer spin J =3+ Z the wave equations
have the form [9] analogous to (4.5)

(£ —1)%, gy - ) = ™, g o pz) =0
X, o0 pbye o iy =0,

gt ) =y ),
The normalized solution of these relations is
Py gy - p2)=19C,, ... C, (4.8)

where the vectors |x) and C, were defined in (4.1) and (4.7), and zero trace of state
is achieved due to the property C>=3(e, +ie,)* =0. Thus, for fields with an arbitrary
half-integer spin the spin factor is equal to

T
¢;—;+z(P)="ij df<x; My iz % Jf:;m---m)
0
T Z T
=—i L dl<x a x>+5 L drie é,—e,é,)
T
=J’J. de C(1) (4.9)
0

and is the product of the spin and the torsion of the path.

Higher integer spins. The classical ficlds with an arbitrary integer spin J=2Z2 are
described by symmetric traceless real tensor fields A, . and F,, _,, forming the state

I- ___I__(Ammm)
¥=7\E .,
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and satisfying the equations [9] analogous to (4.5)
€ ¥ A —F, =0 £, % F +A =0,

2.ty i sivp e pug.puy (TE PRy T]

The system has two nontrivial solutions

1
AL =5(CL. .. CL+Cy, - )

(1) _
Fol o _ﬁ (Ck ... ct -C, ...C.)
and
2) _ (1 (2) — Al
A 1---HJ__F#1---#1 Fm---.u-J_AH]lmHJ
which have the properties
(a) b)  _ ptay (h)  _ gab
AIJ-]'--J-"JA.“"I'--P-J - FF‘!“'MJFP'I-“FLJ =8
and form two orthonormal states
) 1 A(a)
o5 (), o
"/i Fm-»~w

Hence, for fields with an arbitrary integer spin J the spin factor is equal to

dt

-
q’iiz(P):_iJ di<)é,a;,u,1...,uJ x,b;ﬂvl---n‘-‘u>

0

J T
:_E(Uz)ab J. df(eléz_ezél)
0

T
=—J(02)“bj dt C(1). (4.11)
0

Thus, the eigenstates and spin factors entering into the expressions (3.16) for the
propagator and the effective action are given by (4.8) and (4.9} for half-integer and
by {4.10) and {(4.11) for integer spins.

Returning to the Berry connection (3.13) we note that for half-integer spins r=1
and &5"(X) is the Abelian gauge field. In the simplest case of Dirac fermions (K =0)
the field strength (3.14) is given after substitution IT,(¥)=3(1x(x &)) by

F (%) = = THIL (H) 0, (%), ~ T (£) o, I (5)r,) = s 0%
4% 2x
where o, are Pauli matrices. One recognizes in this expression the strength of field
created by monopole with charge 3 placed at the point %, =0. Comparing (3.12), (4.9)
and (4.11) we notice that generalization of this result to arbitrary half-integer spins J
can be achieved by changing of monopole charge from 3 to J, but for integer spins J
one has to replace monopole charge by matrix (—Jo,).

5. Parity of the effective action

The spin factor enters into the effective action (3.16) as Tr[ T exp(—i®P(P)}] and it is
equal to exp(—iJ I{ dt C(t)) for half integer spins and 2 cos(J |J dz C(1)) for integer
spins. Such a difference between spin factors is a manifestation of the parity anomaly
appearing in the effective action of odd dimensional fermions.
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Before examining the parity of the effective action (3.16) we have to take care of
ultravioiet divergences in the perturbation theory expansions of W[A]. In the path
integral representation (3.2) it is the singularity of the integration measure
Jo(dT/T)e ™ and the matrix element | d’x{x|e"""|x) in the limit T -0 that is the
source of ultraviolet divergences. Hence, the summation over loops with vanishing
length T contributes to ultraviolet divergences. To regularize the effective action, one
uses the gauge-invariant Pauli-Villars regularization

W, [A]=—log det((D- I +iM)+log det((D-T)+iMpy)

with regulator mass Mpy>» M. After substitution of (3.16) into this expression the
integration measure over T is replaced by Jo (d7/T)e™™(1—e ™) and has well
defined behaviour in the limit T- 0,

In the lattice approximation the regularized effective action reduces to

W[A]=Y exp{—ML(P)) Tr[ T exp(—id(P))] Tr P exp(i ‘§ dx"Au(x))

where summation is performed over all closed paths in the three-dimensional Euclidean
spacetime. Under parity transformations defined as

P x,u=(xlsx2:x3)ﬁx£=(_xlsx2’x3)
A (x) > Al(x) =(—Ai(x), Ax(x), Ay(x))

the length L of the loop and P-ordered exponential are unchanged but the torsion
C(1t) changes in sign. The spin factor being the only source of anomalous parity
properties is even function of the torsion only for integer spins. Thus, the effective
action of integer spin fields is scalar but the effective action of half-integer spin fields
is transformed non-trivial and is decomposed for an arbitrary mass M into a sum of
scalar and pseudoscalar contributions [15].

6. Conclusion

It is well known that quantum scalar field describes randomly walking spinless relativis-
tic particles in the path-integral approach, The generalization to spinning particles is
achieved by introducing the path depending ‘spin factor’ into the path integral for
scalar particle [1]. It turns out that for particles with an arbitrary half-integer spin the
spin factor coincides with the Abelian Berry phase and is equal to a product of the
spin and the torsion of the path. For particles with integer spin the spin factor being
the non-Abelian Berry phase is a product of the Pauli matrix, spin and the torsion of
the path. Different properties of the spin factors for integer and half-integer spins are
the manifestation of the parity anomaly appearing in the effective action of three-
dimensional fermions.

The generalization of the above results to higher dimensions using methods [7] is
straightforward.
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Appendix

Under rotations of the vector p, with angle w, the field ¢(p) is transformed in
accordance with a reducibie representation of the SO(3) group

¢ (p)—>exp(iZ*w,)o(p)

where £* are generators of the representation. The Lorentz covariance of (2.2) implies
that Z* obey the equation

(p*-T)=U(p-TYU" U =exp(iZ*w,).

Replacing vectors p;; and p, by the tangent vectors X, (r+ 8t) and x,(1), respectively,
one gets using (2.17)

T (X(t+80)) = UL (x(eH U™ U=exp(iZ*w,) (A1)

with w, being the angle between the vectors X,(t+ 8i) and %,(1).
Let us denote the product of two projectors as follows

I (X (e + SENTLAX( 1)) = VIT(x(¢)). (A2)
Then matrix V satisfies the equation
T (X(t+ SN NTL % (¢ + 81)) = VIL (x (1)) V" (A3)

whase LHs after substitution of T1,.(%) =2, |%, a}(%, a| in the limit 8- 0 is equal to
1. (x(t+ &)} + O(51%). Hence, up to 0(8¢7) terms (A1) and (A3) coincide and one finds

V=U=1+i 0, +0(8%) = 1—iZ"¢,,,%,%,6t + O(817). (A4)
Combining (A2) and {Ad) we obtain (3.15).
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